Introduction to Algebraic K-theory

Introduction to Algebraic K-theory
Author :
Publisher : Princeton University Press
Total Pages : 204
Release :
ISBN-10 : 0691081018
ISBN-13 : 9780691081014
Rating : 4/5 (014 Downloads)

Book Synopsis Introduction to Algebraic K-theory by : John Willard Milnor

Download or read book Introduction to Algebraic K-theory written by John Willard Milnor and published by Princeton University Press. This book was released on 1971 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.

Introduction to Algebraic K-theory Related Books

Introduction to Algebraic K-theory
Language: en
Pages: 204
Authors: John Willard Milnor
Categories: Mathematics
Type: BOOK - Published: 1971 - Publisher: Princeton University Press

GET EBOOK

Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or
Algebraic K-theory of Crystallographic Groups
Language: en
Pages: 153
Authors: Daniel Scott Farley
Categories: Mathematics
Type: BOOK - Published: 2014-08-27 - Publisher: Springer

GET EBOOK

The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In
Syzygies and Homotopy Theory
Language: en
Pages: 307
Authors: F.E.A. Johnson
Categories: Mathematics
Type: BOOK - Published: 2011-11-17 - Publisher: Springer Science & Business Media

GET EBOOK

The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familia
Leavitt Path Algebras and Classical K-Theory
Language: en
Pages: 340
Authors: A. A. Ambily
Categories: Mathematics
Type: BOOK - Published: 2020-01-17 - Publisher: Springer Nature

GET EBOOK

The book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-t
Topics in Algebraic and Topological K-Theory
Language: en
Pages: 322
Authors: Paul Frank Baum
Categories: Mathematics
Type: BOOK - Published: 2010-11-05 - Publisher: Springer Science & Business Media

GET EBOOK

This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov