An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 314
Release :
ISBN-10 : 9781441984746
ISBN-13 : 1441984747
Rating : 4/5 (747 Downloads)

Book Synopsis An Introduction to the Mathematical Theory of Inverse Problems by : Andreas Kirsch

Download or read book An Introduction to the Mathematical Theory of Inverse Problems written by Andreas Kirsch and published by Springer Science & Business Media. This book was released on 2011-03-24 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.

An Introduction to the Mathematical Theory of Inverse Problems Related Books

An Introduction to the Mathematical Theory of Inverse Problems
Language: en
Pages: 314
Authors: Andreas Kirsch
Categories: Mathematics
Type: BOOK - Published: 2011-03-24 - Publisher: Springer Science & Business Media

GET EBOOK

This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such
Parameter Estimation and Inverse Problems
Language: en
Pages: 406
Authors: Richard C. Aster
Categories: Science
Type: BOOK - Published: 2018-10-16 - Publisher: Elsevier

GET EBOOK

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate
A Taste of Inverse Problems
Language: en
Pages: 171
Authors: Martin Hanke
Categories: Mathematics
Type: BOOK - Published: 2017-01-01 - Publisher: SIAM

GET EBOOK

Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. The
Computational Methods for Inverse Problems
Language: en
Pages: 195
Authors: Curtis R. Vogel
Categories: Mathematics
Type: BOOK - Published: 2002-01-01 - Publisher: SIAM

GET EBOOK

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Inverse Problems for Partial Differential Equations
Language: en
Pages: 296
Authors: Victor Isakov
Categories: Mathematics
Type: BOOK - Published: 2013-06-29 - Publisher: Springer Science & Business Media

GET EBOOK

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recover