Advanced Analytics in Mining Engineering

Advanced Analytics in Mining Engineering
Author :
Publisher : Springer Nature
Total Pages : 746
Release :
ISBN-10 : 9783030915896
ISBN-13 : 3030915891
Rating : 4/5 (891 Downloads)

Book Synopsis Advanced Analytics in Mining Engineering by : Ali Soofastaei

Download or read book Advanced Analytics in Mining Engineering written by Ali Soofastaei and published by Springer Nature. This book was released on 2022-02-23 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Dr. Soofastaei and his colleagues reveal how all mining managers can effectively deploy advanced analytics in their day-to-day operations- one business decision at a time. Most mining companies have a massive amount of data at their disposal. However, they cannot use the stored data in any meaningful way. The powerful new business tool-advanced analytics enables many mining companies to aggressively leverage their data in key business decisions and processes with impressive results. From statistical analysis to machine learning and artificial intelligence, the authors show how many analytical tools can improve decisions about everything in the mine value chain, from exploration to marketing. Combining the science of advanced analytics with the mining industrial business solutions, introduce the “Advanced Analytics in Mining Engineering Book” as a practical road map and tools for unleashing the potential buried in your company’s data. The book is aimed at providing mining executives, managers, and research and development teams with an understanding of the business value and applicability of different analytic approaches and helping data analytics leads by giving them a business framework in which to assess the value, cost, and risk of potential analytical solutions. In addition, the book will provide the next generation of miners – undergraduate and graduate IT and mining engineering students – with an understanding of data analytics applied to the mining industry. By providing a book with chapters structured in line with the mining value chain, we will provide a clear, enterprise-level view of where and how advanced data analytics can best be applied. This book highlights the potential to interconnect activities in the mining enterprise better. Furthermore, the book explores the opportunities for optimization and increased productivity offered by better interoperability along the mining value chain – in line with the emerging vision of creating a digital mine with much-enhanced capabilities for modeling, simulation, and the use of digital twins – in line with leading “digital” industries.

Advanced Analytics in Mining Engineering Related Books

Advanced Analytics in Mining Engineering
Language: en
Pages: 746
Authors: Ali Soofastaei
Categories: Business & Economics
Type: BOOK - Published: 2022-02-23 - Publisher: Springer Nature

GET EBOOK

In this book, Dr. Soofastaei and his colleagues reveal how all mining managers can effectively deploy advanced analytics in their day-to-day operations- one bus
Data Analytics Applied to the Mining Industry
Language: en
Pages: 273
Authors: Ali Soofastaei
Categories: Computers
Type: BOOK - Published: 2020-11-12 - Publisher: CRC Press

GET EBOOK

Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully explo
Handbook of Statistical Analysis and Data Mining Applications
Language: en
Pages: 824
Authors: Ken Yale
Categories: Mathematics
Type: BOOK - Published: 2017-11-09 - Publisher: Elsevier

GET EBOOK

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, sci
Feature Engineering for Machine Learning and Data Analytics
Language: en
Pages: 400
Authors: Guozhu Dong
Categories: Business & Economics
Type: BOOK - Published: 2018-03-14 - Publisher: CRC Press

GET EBOOK

Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if th
Engineering Analytics
Language: en
Pages: 283
Authors: Luis Rabelo
Categories: Business & Economics
Type: BOOK - Published: 2021-09-26 - Publisher: CRC Press

GET EBOOK

Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally trans