Antedependence Models for Longitudinal Data
Author | : Dale L. Zimmerman |
Publisher | : CRC Press |
Total Pages | : 288 |
Release | : 2009-08-19 |
ISBN-10 | : 1420064274 |
ISBN-13 | : 9781420064278 |
Rating | : 4/5 (278 Downloads) |
Download or read book Antedependence Models for Longitudinal Data written by Dale L. Zimmerman and published by CRC Press. This book was released on 2009-08-19 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The First Book Dedicated to This Class of Longitudinal Models Although antedependence models are particularly useful for modeling longitudinal data that exhibit serial correlation, few books adequately cover these models. By gathering results scattered throughout the literature, Antedependence Models for Longitudinal Data offers a convenient, systematic way to learn about antedependence models. Illustrated with numerous examples, the book also covers some important statistical inference procedures associated with these models. After describing unstructured and structured antedependence models and their properties, the authors discuss informal model identification via simple summary statistics and graphical methods. They then present formal likelihood-based procedures for normal antedependence models, including maximum likelihood and residual maximum likelihood estimation of parameters as well as likelihood ratio tests and penalized likelihood model selection criteria for the model’s covariance structure and mean structure. The authors also compare the performance of antedependence models to other models commonly used for longitudinal data. With this book, readers no longer have to search across widely scattered journal articles on the subject. The book provides a thorough treatment of the properties and statistical inference procedures of various antedependence models.