Connectivity Properties of Group Actions on Non-Positively Curved Spaces
Author | : Robert Bieri |
Publisher | : American Mathematical Soc. |
Total Pages | : 105 |
Release | : 2003 |
ISBN-10 | : 9780821831847 |
ISBN-13 | : 0821831844 |
Rating | : 4/5 (844 Downloads) |
Download or read book Connectivity Properties of Group Actions on Non-Positively Curved Spaces written by Robert Bieri and published by American Mathematical Soc.. This book was released on 2003 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalizing the Bieri-Neumann-Strebel-Renz Invariants, this Memoir presents the foundations of a theory of (not necessarily discrete) actions $\rho$ of a (suitable) group $G$ by isometries on a proper CAT(0) space $M$. The passage from groups $G$ to group actions $\rho$ implies the introduction of 'Sigma invariants' $\Sigmak(\rho)$ to replace the previous $\Sigmak(G)$ introduced by those authors. Their theory is now seen as a special case of what is studied here so that readers seeking a detailed treatment of their theory will find it included here as a special case. We define and study 'controlled $k$-connectedness $(CCk)$' of $\rho$, both over $M$ and over end points $e$ in the 'boundary at infinity' $\partial M$; $\Sigmak(\rho)$ is by definition the set of all $e$ over which the action is $(k-1)$-connected. A central theorem, the Boundary Criterion, says that $\Sigmak(\rho) = \partial M$ if and only if $\rho$ is $CC{k-1}$ over $M$.An Openness Theorem says that $CCk$ over $M$ is an open condition on the space of isometric actions $\rho$ of $G$ on $M$. Another Openness Theorem says that $\Sigmak(\rho)$ is an open subset of $\partial M$ with respect to the Tits metric topology. When $\rho(G)$ is a discrete group of isometries the property $CC{k-1}$ is equivalent to ker$(\rho)$ having the topological finiteness property type '$F_k$'. More generally, if the orbits of the action are discrete, $CC{k-1}$ is equivalent to the point-stabilizers having type $F_k$. In particular, for $k=2$ we are characterizing finite presentability of kernels and stabilizers. Examples discussed include: locally rigid actions, translation actions on vector spaces (especially those by metabelian groups