Discovering Causal Structure

Discovering Causal Structure
Author :
Publisher : Academic Press
Total Pages : 413
Release :
ISBN-10 : 9781483265797
ISBN-13 : 148326579X
Rating : 4/5 (79X Downloads)

Book Synopsis Discovering Causal Structure by : Clark Glymour

Download or read book Discovering Causal Structure written by Clark Glymour and published by Academic Press. This book was released on 2014-05-10 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling provides information pertinent to the fundamental aspects of a computer program called TETRAD. This book discusses the version of the TETRAD program, which is designed to assist in the search for causal explanations of statistical data. or alternative models. This text then examines the notion of applying artificial intelligence methods to problems of statistical model specification. Other chapters consider how the TETRAD program can help to find god alternative models where they exist, and how it can help detect the existence of important neglected variables. This book discusses as well the procedures for specifying a model or models to account for non-experimental or quasi-experimental data. The final chapter presents a description of the format of input files and a description of each command. This book is a valuable resource for social scientists and researchers.

Discovering Causal Structure Related Books

Discovering Causal Structure
Language: en
Pages: 413
Authors: Clark Glymour
Categories: Social Science
Type: BOOK - Published: 2014-05-10 - Publisher: Academic Press

GET EBOOK

Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling provides information pertinent to the fundamental aspects
Causation, Prediction, and Search
Language: en
Pages: 551
Authors: Peter Spirtes
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

GET EBOOK

This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to pre
Cause Effect Pairs in Machine Learning
Language: en
Pages: 378
Authors: Isabelle Guyon
Categories: Computers
Type: BOOK - Published: 2019-10-22 - Publisher: Springer Nature

GET EBOOK

This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause
Elements of Causal Inference
Language: en
Pages: 289
Authors: Jonas Peters
Categories: Computers
Type: BOOK - Published: 2017-11-29 - Publisher: MIT Press

GET EBOOK

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is
An Introduction to Causal Inference
Language: en
Pages: 0
Authors: Judea Pearl
Categories: Causation
Type: BOOK - Published: 2015 - Publisher: Createspace Independent Publishing Platform

GET EBOOK

This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical