Generalized Linear and Nonlinear Models for Correlated Data

Generalized Linear and Nonlinear Models for Correlated Data
Author :
Publisher : SAS Institute
Total Pages : 837
Release :
ISBN-10 : 9781629592305
ISBN-13 : 1629592307
Rating : 4/5 (307 Downloads)

Book Synopsis Generalized Linear and Nonlinear Models for Correlated Data by : Edward F. Vonesh

Download or read book Generalized Linear and Nonlinear Models for Correlated Data written by Edward F. Vonesh and published by SAS Institute. This book was released on 2014-07-07 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately. This book is part of the SAS Press program.

Generalized Linear and Nonlinear Models for Correlated Data Related Books