Multidimensional Preference Scaling

Multidimensional Preference Scaling
Author :
Publisher : De Gruyter Mouton
Total Pages : 0
Release :
ISBN-10 : 9027975922
ISBN-13 : 9789027975928
Rating : 4/5 (928 Downloads)

Book Synopsis Multidimensional Preference Scaling by : Gordon G. Bechtel

Download or read book Multidimensional Preference Scaling written by Gordon G. Bechtel and published by De Gruyter Mouton. This book was released on 1976 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Multidimensional Preference Scaling Related Books

Multidimensional Preference Scaling
Language: en
Pages: 0
Authors: Gordon G. Bechtel
Categories: Language Arts & Disciplines
Type: BOOK - Published: 1976 - Publisher: De Gruyter Mouton

GET EBOOK

Modern Multidimensional Scaling
Language: en
Pages: 469
Authors: Ingwer Borg
Categories: Mathematics
Type: BOOK - Published: 2013-04-18 - Publisher: Springer Science & Business Media

GET EBOOK

Multidimensional scaling (MDS) is a technique for the analysis of similarity or dissimilarity data on a set of objects. Such data may be intercorrelations of te
Multidimensional preference scaling
Language: en
Pages: 184
Authors: Gordon G. Bechtel
Categories: Language Arts & Disciplines
Type: BOOK - Published: 2019-05-20 - Publisher: Walter de Gruyter GmbH & Co KG

GET EBOOK

No detailed description available for "Multidimensional preference scaling".
Applied Multidimensional Scaling and Unfolding
Language: en
Pages: 128
Authors: Ingwer Borg
Categories: Computers
Type: BOOK - Published: 2018-05-16 - Publisher: Springer

GET EBOOK

This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity
Multidimensional Scaling
Language: en
Pages: 100
Authors: Joseph B. Kruskal
Categories: Social Science
Type: BOOK - Published: 1978-01-01 - Publisher: SAGE Publications

GET EBOOK

Outlines a set of techniques that enables a researcher to explore the hidden structure of large databases. These techniques use proximities to find a configurat