Neural Networks with R

Neural Networks with R
Author :
Publisher : Packt Publishing Ltd
Total Pages : 264
Release :
ISBN-10 : 9781788399418
ISBN-13 : 1788399412
Rating : 4/5 (412 Downloads)

Book Synopsis Neural Networks with R by : Giuseppe Ciaburro

Download or read book Neural Networks with R written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-09-27 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Neural Networks with R Related Books

Neural Networks with R
Language: en
Pages: 264
Authors: Giuseppe Ciaburro
Categories: Computers
Type: BOOK - Published: 2017-09-27 - Publisher: Packt Publishing Ltd

GET EBOOK

Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to i
Deep Learning with R
Language: en
Pages: 528
Authors: François Chollet
Categories: Computers
Type: BOOK - Published: 2018-01-22 - Publisher: Simon and Schuster

GET EBOOK

Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understan
Supervised Machine Learning for Text Analysis in R
Language: en
Pages: 402
Authors: Emil Hvitfeldt
Categories: Computers
Type: BOOK - Published: 2021-10-22 - Publisher: CRC Press

GET EBOOK

Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for
Deep Learning with R
Language: en
Pages: 259
Authors: Abhijit Ghatak
Categories: Computers
Type: BOOK - Published: 2019-04-13 - Publisher: Springer

GET EBOOK

Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and
Introduction to Deep Learning Using R
Language: en
Pages: 240
Authors: Taweh Beysolow II
Categories: Business & Economics
Type: BOOK - Published: 2017-07-19 - Publisher: Apress

GET EBOOK

Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/ser