Parametrized Homotopy Theory
Author | : J. Peter May |
Publisher | : American Mathematical Soc. |
Total Pages | : 456 |
Release | : 2006 |
ISBN-10 | : 9780821839225 |
ISBN-13 | : 0821839225 |
Rating | : 4/5 (225 Downloads) |
Download or read book Parametrized Homotopy Theory written by J. Peter May and published by American Mathematical Soc.. This book was released on 2006 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.