Photonic Integration and Photonics-Electronics Convergence on Silicon Platform
Author | : Koji Yamada |
Publisher | : Frontiers Media SA |
Total Pages | : 111 |
Release | : 2015-11-10 |
ISBN-10 | : 9782889196937 |
ISBN-13 | : 2889196933 |
Rating | : 4/5 (933 Downloads) |
Download or read book Photonic Integration and Photonics-Electronics Convergence on Silicon Platform written by Koji Yamada and published by Frontiers Media SA. This book was released on 2015-11-10 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.