The Riesz Transform of Codimension Smaller Than One and the Wolff Energy
Author | : Benjamin Jaye |
Publisher | : American Mathematical Soc. |
Total Pages | : 97 |
Release | : 2020-09-28 |
ISBN-10 | : 9781470442132 |
ISBN-13 | : 1470442132 |
Rating | : 4/5 (132 Downloads) |
Download or read book The Riesz Transform of Codimension Smaller Than One and the Wolff Energy written by Benjamin Jaye and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fix $dgeq 2$, and $sin (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-Delta )^alpha /2$, $alpha in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.