Unsteady Combustion
Author | : F. Culick |
Publisher | : Springer Science & Business Media |
Total Pages | : 560 |
Release | : 2012-12-06 |
ISBN-10 | : 9789400916203 |
ISBN-13 | : 9400916205 |
Rating | : 4/5 (205 Downloads) |
Download or read book Unsteady Combustion written by F. Culick and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers prepared for the NATO Advanced Study Institute on "Unsteady Combustion", which was held in Praia da Granja, Portugal, 6-17 September 1993. Approximately 100 delegates from 14 countries attended. The Institute was the most recent in a series beginning with "Instrumentation for Combustion and Flow in Engines", held in Vimeiro, Portugal 1987 and followed by "Combusting Flow Diagnostics" conducted in Montechoro, Portugal in 1990. Together, these three Institutes have covered a wide range of experimental and theoretical topics arising in the research and development of combustion systems with particular emphasis on gas-turbine combustors and internal combustion engines. The emphasis has evolved roughly from instrumentation and experimental techniques to the mixture of experiment, theory and computational work covered in the present volume. As the title of this book implies, the chief aim of this Institute was to provide a broad sampling of problems arising with time-dependent behaviour in combustors. In fact, of course, that intention encompasses practically all possibilities, for "steady" combustion hardly exists if one looks sufficiently closely at the processes in a combustion chamber. The point really is that, apart from the excellent paper by Bahr (Chapter 10) discussing the technology of combustors for aircraft gas turbines, little attention is directed to matters of steady performance. The volume is divided into three parts devoted to the subjects of combustion-induced oscillations; combustion in internal combustion engines; and experimental techniques and modelling.